## 1 MHz to 80 MHz High Performance VCMO



#### **Features**

- Any frequency between 1 and 80 MHz accurate to 6 decimal places of accuracy
- 100% pin-to-pin drop-in replacement to quartz-based VCXO
- Frequency stability as low as ±10 ppm
- Widest pull range options from ±25 ppm to ±1600 ppm
- Industrial or extended commercial temperature range
- Superior pull range linearity of ≤1%, 10 times better than quartz
- LVCMOS/LVTTL compatible output
- Four industry-standard packages: 2.7 x 2.4 mm (4-pin) (compatible with 2.5 x 2.0 mm footprint), 3.2 x 2.5mm (4-pin), 5.0 x 3.2 mm (6-pin), 7.0 x 5.0 mm (6-pin)
- Instant samples with Time Machine II and field programmable oscillators
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free

## **Applications**

- Telecom clock synchronization, instrumentation
- Low bandwidth analog PLL, jitter cleaner, clock recovery, audio
- Video, 3G/HD-SDI, FPGA, broadband and networking





Pb-Free

RoHS Compliant

## Electrical Specifications Table 1. Electrical Characteristics<sup>[1,2,3]</sup>

| Parameter                         | Symbol  | Min.  | Тур.                          | Max.        | Unit       | Condition                                                                                                                               |
|-----------------------------------|---------|-------|-------------------------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                   |         |       | ı                             | Frequency I | Range      |                                                                                                                                         |
| Output Frequency Range            | f       | 1     | -                             | 80          | MHz        |                                                                                                                                         |
|                                   |         |       | Freque                        | ncy Stabili | ty and Agi | ing                                                                                                                                     |
|                                   |         | -10   | -                             | +10         | PPM        |                                                                                                                                         |
| Frequency Stability               | F_stab  | -25   | -                             | +25         | PPM        | Inclusive of Initial tolerance <sup>[4]</sup> at +25 °C, and variations over operating temperature, rated power supply voltage and load |
|                                   |         | -50   | _                             | +50         | PPM        | - operating temperature, rated power supply voltage and load                                                                            |
| Aging                             | F_aging | -5    | -                             | +5          | PPM        | 10 years, +25°C                                                                                                                         |
| Operating Temperature Range       | T use   | -20   | _                             | +70         | °C         | Extended Commercial                                                                                                                     |
| Operating reinperature Kange      | 1_use   | -40   | -                             | +85         | °C         | Industrial                                                                                                                              |
|                                   |         |       | Supply Volta                  | ge and Cur  | rent Cons  | umption                                                                                                                                 |
| Supply Voltage                    |         | +1.71 | +1.8                          | +1.89       | V          |                                                                                                                                         |
|                                   | Vdd     | +2.25 | +2.5                          | +2.75       | V          | Supply voltages between +2.5V and +3.3V can be supported.                                                                               |
|                                   | Vuu     | +2.52 | +2.8                          | +3.08       | V          | Contact KDS for additional information.                                                                                                 |
|                                   |         | +2.97 | +3.3                          | +3.63       | V          |                                                                                                                                         |
| Current Consumption               | ldd     | -     | +31                           | +33         | mA         | No load condition, f = 20 MHz, Vdd = +2.5V, +2.8V or +3.3V                                                                              |
| Current Consumption               |         | -     | +29                           | +31         | mA         | No load condition, f = 20 MHz, Vdd = +1.8V                                                                                              |
| Standby Current                   | I_std   | -     | _                             | +70         | μΑ         | Vdd = $\pm 2.5V$ , $\pm 2.8V$ or $\pm 3.3V$ , $\overline{ST}$ = GND, output is Weakly Pulled Down                                       |
|                                   |         | -     | -                             | +10         | μΑ         | Vdd = +1.8 V. ST = GND, output is Weakly Pulled Down                                                                                    |
|                                   |         |       | VC                            | CMO Charac  | teristics  |                                                                                                                                         |
| Pull Range <sup>[5,6]</sup>       | PR      |       | 0, ±100, ±15<br>00, ±800, ±16 |             | ppm        | See the Absolute Pull Range and APR table on page 10                                                                                    |
|                                   |         | +1.7  | -                             | -           | V          | Vdd = +1.8V, Voltage at which maximum deviation is guaranteed.                                                                          |
| Upper Control Voltage             | VC U    | +2.4  | -                             | -           | V          | Vdd = +2.5V, Voltage at which maximum deviation is guaranteed.                                                                          |
| Opper Control Voltage             | VC_U    | +2.7  | -                             | -           | V          | Vdd = +2.8V, Voltage at which maximum deviation is guaranteed.                                                                          |
|                                   |         | +3.2  | -                             | -           | V          | Vdd = +3.3V, Voltage at which maximum deviation is guaranteed.                                                                          |
| Lower Control Voltage             | VC_L    | _     | -                             | +0.1        | V          | Voltage at which minimum deviation is guaranteed.                                                                                       |
| Control Voltage Input Impedance   | Z_in    | 100   | -                             | -           | kΩ         |                                                                                                                                         |
| Control Voltage Input Capacitance | C_in    | _     | 5                             | -           | pF         |                                                                                                                                         |
| Linearity                         | Lin     |       | 0.1                           | 1           | %          |                                                                                                                                         |
| Frequency Change Polarity         | _       | F     | Positive Slope                | e           | -          |                                                                                                                                         |
| Control Voltage Bandwidth (-3dB)  | V_BW    | -     | 8                             | -           | kHz        | Contact KDS for 16 kHz and other high bandwidth options                                                                                 |

Daishinku Corp. 138

Rev. 1.01

## MO3808

## 1 MHz to 80 MHz High Performance VCMO



## Electrical Specifications (continued) Table 1. Electrical Characteristics<sup>[1,2,3]</sup>

| Parameter                     | Symbol   | Min. | Тур.   | Max.        | Unit       | Condition                                                                                             |  |  |
|-------------------------------|----------|------|--------|-------------|------------|-------------------------------------------------------------------------------------------------------|--|--|
| LVCMOS Output Characteristics |          |      |        |             |            |                                                                                                       |  |  |
| Duty Cycle                    | DC       | 45   | _      | 55          | %          | All Vdds. Refer to Note 11 for definition of Duty Cycle                                               |  |  |
| Rise/Fall Time                | Tr,Tf    | -    | 1.5    | 2.0         | ns         | Vdd = +1.8V, +2.5V, +2.8V or +3.3V, 10% - 90% Vdd level                                               |  |  |
| Output High Voltage           | VOH      | 90%  | 1      | -           | Vdd        | IOH = -7 mA (Vdd = +3.0V or +3.3V)<br>IOH = -4 mA (Vdd = +2.8V or +2.5V)<br>IOH = -2 mA (Vdd = +1.8V) |  |  |
| Output Low Voltage            | VOL      | -    | -      | 10%         | Vdd        | IOH = +7 mA (Vdd = +3.0V or +3.3V)<br>IOH = +4 mA (Vdd = +2.8V or +2.5V)<br>IOH = +2 mA (Vdd = +1.8V) |  |  |
|                               |          |      | In     | put Charact | eristics   |                                                                                                       |  |  |
| Input Pull-up Impedance       | Z_in     | -    | 100    | 250         | kΩ         | For the OE/ST pin for 6-pin devices                                                                   |  |  |
| Input Capacitance             | C_in     | -    | 5      | -           | pF         | For the OE/ST pin for 6-pin devices                                                                   |  |  |
|                               |          |      | Startu | ıp and Resi | ıme Timing |                                                                                                       |  |  |
| Startup Time                  | T_start  | -    | -      | 10          | ms         | See Figure 7 for startup resume timing diagram                                                        |  |  |
| OE Enable/Disable Time        | T_oe     | -    | -      | 180         | ns         | f = 40 MHz, all Vdds. For other freq, T_oe = 100 ns + 3 clock periods                                 |  |  |
| Resume Time                   | T_resume | -    | 7      | 10          | ms         | See Figure 8 for resume timing diagram                                                                |  |  |
|                               |          |      |        | Jitter      | ·          |                                                                                                       |  |  |
| RMS Period Jitter             | Т ;;++   | -    | 1.5    | 2.0         | ps         | f = 20 MHz, Vdd = +2.5V, +2.8V or +3.3V                                                               |  |  |
| KW3 Feriou Sitter             | T_jitt   | -    | 2.0    | 3.0         | ps         | f = 20 MHz, Vdd = +1.8V                                                                               |  |  |
| RMS Phase Jitter (random)     | T_phj    | -    | 0.5    | 1.0         | ps         | f = 20 MHz, Integration bandwidth = 12 kHz to 20 MHz, All Vdds                                        |  |  |

#### Note:

- 1. All electrical specifications in the above table are specified with 15 pF output load and for all Vdd(s) unless otherwise stated.
- 2. The typical value of any parameter in the Electrical Characteristics table is specified for the nominal value of the highest voltage option for that parameter and at +25°C temperature
- 3. All max and min specifications are guaranteed across rated voltage variations and operating temperature ranges, unless specified otherwise
- 4. Initial tolerance is measured at Vin = Vdd/2
- 5. Absolute Pull Range (APR) is defined as the guaranteed pull range over temperature and voltage.
- 6. APR = pull range (PR) frequency stability (F\_stab) Aging (F\_aging)



## Table 2. Pin Description. 4-Pin Configuration (For 2.7 x 2.0 mm and 3.2 x 2.5 mm Packages)

| Pin | Symbol | Functionality |                                                    |  |  |  |  |
|-----|--------|---------------|----------------------------------------------------|--|--|--|--|
| 1   | VIN    | Input         | 0-Vdd: produces voltage dependent frequency change |  |  |  |  |
| 2   | GND    | Power         | Electrical ground                                  |  |  |  |  |
| 3   | CLK    | Output        | Oscillator output                                  |  |  |  |  |
| 4   | VDD    | Power         | Power supply voltage <sup>[7]</sup>                |  |  |  |  |

#### Notes:

7. A capacitor value of 0.1  $\mu F$  between VDD and GND is recommended.

## Table 3. Pin Description. 6-Pin Configuration (For 5.0 x 3.2 mm and 7.0 x 5.0 mm Packages)

| Pin | Symbol   | Functionality    |                                                                                                                               |  |  |  |  |
|-----|----------|------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1   | VIN      | Input            | 0-Vdd: produces voltage dependent frequency change                                                                            |  |  |  |  |
|     | C        |                  | H or L or Open: No effect on output frequency or other device function                                                        |  |  |  |  |
| 2   | NC/OE/ST | Output<br>Enable | H or Open <sup>[8]</sup> : specified frequency output<br>L: output is high                                                    |  |  |  |  |
|     |          | Standby          | H or Open <sup>[8]</sup> : specified frequency output<br>L: output is low (weak pull down) <sup>[9]</sup> . Oscillation stops |  |  |  |  |
| 3   | GND      | Power            | Electrical ground                                                                                                             |  |  |  |  |
| 4   | CLK      | Output           | Oscillator output                                                                                                             |  |  |  |  |
| 5   | NC       | No<br>Connect    | H or L or Open: No effect on output frequency or other device functions                                                       |  |  |  |  |
| 6   | VDD      | Power            | Power supply voltage <sup>[10]</sup>                                                                                          |  |  |  |  |

#### **Top View**

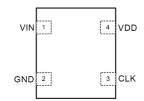



Figure 1.

#### **Top View**

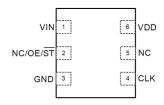



Figure 2.

#### Notes:

- 8. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 2 in the 6-pin package is not externally driven. If pin 2 needs to be left floating, use the NC option.
- 9. Typical value of the weak pull-down impedance is 5 m $\Omega$
- 10. A capacitor value of 0.1 µF between VDD and GND is recommended.

#### **Table 4. Absolute Maximum Limits**

Attempted operation outside the absolute maximum ratings of the part may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

| Parameter                                                            | Min. | Max.  | Unit |
|----------------------------------------------------------------------|------|-------|------|
| Storage Temperature                                                  | -65  | +150  | °C   |
| VDD                                                                  | -0.5 | +4.0  | V    |
| Electrostatic Discharge                                              | -    | +2000 | V    |
| Soldering Temperature (follow standard Pb free soldering guidelines) | _    | +260  | °C   |

#### **Table 5. Thermal Consideration**

| Package | θJA, 4 Layer Board<br>(°C/W) | θJA, 2 Layer Board<br>(°C/W) | θJC, Bottom<br>(°C/W) |
|---------|------------------------------|------------------------------|-----------------------|
| 7050    | 191                          | 263                          | 30                    |
| 5032    | 97                           | 199                          | 24                    |
| 3225    | 109                          | 212                          | 27                    |
| 2724    | 117                          | 222                          | 26                    |

#### **Table 6. Environmental Compliance**

| Parameter                  | Condition/Test Method     |
|----------------------------|---------------------------|
| Mechanical Shock           | MIL-STD-883F, Method 2002 |
| Mechanical Vibration       | MIL-STD-883F, Method 2007 |
| Temperature Cycle          | JESD22, Method A104       |
| Solderability              | MIL-STD-883F, Method 2003 |
| Moisture Sensitivity Level | MSL1 @ 260°C              |



#### **Phase Noise Plot**

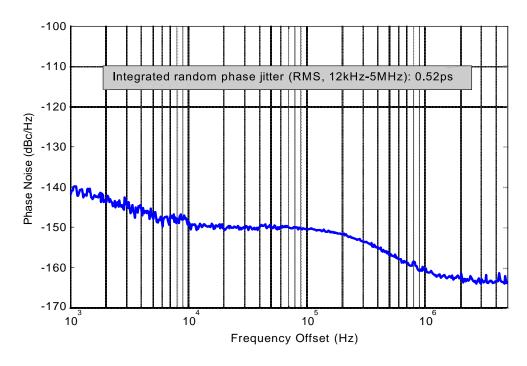



Figure 3. Phase Noise, 10 MHz, +3.3V, LVCMOS Output

#### **Test Circuit and Waveform**

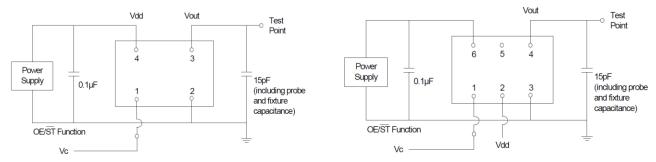



Figure 4. Test Circuit (4-Pin Device)

Figure 5. Test Circuit (6-Pin Device)

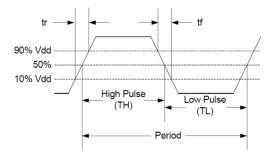



Figure 6. Waveform

#### Notes:

- 11. Duty Cycle is computed as Duty Cycle = TH/Period.
- 12. MO3808 supports the configurable duty cycle feature. For custom duty cycle at any given frequency, contact KDS.



### **Timing Diagram**

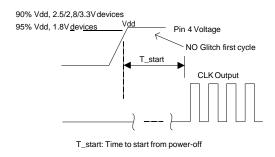



Figure 7. Startup Timing (OE/STMode)

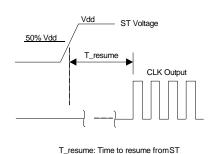
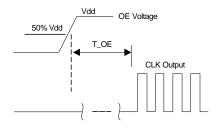
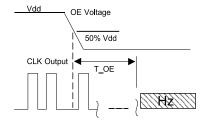





Figure 8. Standby Resume Timing (ST Mode Only)



T\_oe: Time to re-enable the clock output



 $T\_oe$ : Time to put the output drive in High Z mode

Figure 9. OE Enable Timing (OE Mode Only)

Figure 10. OE Disable Timing (OE Mode Only)

#### Notes:

- 13. MO3808 supports "no runt" pulses and "no glitch" output during startup or resume.14. MO3808 supports gated output which is accurate within rated frequency stability from the first cycle.



#### **Programmable Drive Strength**

The MO3808 includes a programmable drive strength feature to provide a simple, flexible tool to optimize the clock rise/fall time for specific applications. Benefits from the programmable drive strength feature are:

- Improves system radiated electromagnetic interference (EMI) by slowing down the clock rise/fall time
- Improves the downstream clock receiver's (RX) jitter by decreasing (speeding up) the clock rise/fall time.
- Ability to drive large capacitive loads while maintaining full swing with sharp edge rates.

For more detailed information about rise/fall time control and drive strength selection, Contact KDS.

#### **EMI Reduction by Slowing Rise/Fall Time**

Figure 11 shows the harmonic power reduction as the rise/fall times are increased (slowed down). The rise/fall times are expressed as a ratio of the clock period. For the ratio of 0.05, the signal is very close to a square wave. For the ratio of 0.45, the signal is very close to near-triangular waveform. These results, for example, show that the 11th clock harmonic can be reduced by 35 dB if the rise/fall edge is increased from 5% of the period to 45% of the period.

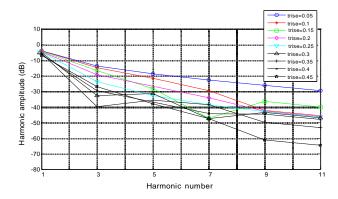



Figure 11. Harmonic EMI reduction as a Function of Slower Rise/Fall Time

#### Jitter Reduction with Faster Rise/Fall Time

Power supply noise can be a source of jitter for the downstream chipset. One way to reduce this jitter is to increase rise/fall time (edge rate) of the input clock. Some chipsets would require faster rise/fall time in order to reduce their sensitivity to this type of jitter. Refer to the Rise/Fall Time Tables to determine the proper drive strength.

#### **High Output Load Capability**

The rise/fall time of the input clock varies as a function of the actual capacitive load the clock drives. At any given drive strength, the rise/fall time becomes slower as the output load increases. As an example, for a +3.3V MO3808 device with default drive strength setting, the typical rise/fall time is 1.15ns for 15 pF output load. The typical rise/fall time slows down to 2.72ns when the output load increases to 45 pF. One can

choose to speed up the rise/fall time to 1.41ns by then increasing the drive strength setting on the MO3808.

The MO3808 can support up to 60 pF maximum capacitive loads. Refer to the Rise/Tall Time Tables to determine the proper drive strength for the desired combination of output load vs. rise/fall time

#### MO3808 Drive Strength Selection

Tables 7 through 10 define the rise/fall time for a given capac- itive load and supply voltage.

- 1. Select the table that matches the MO3808 nominal supply voltage (+1.8V, +2.5V, +2.8V, +3.0V, +3.3V).
- Select the capacitive load column that matches the application requirement (5 pF to 60 pF)
- Under the capacitive load column, select the desired rise/fall times.
- 4. The left-most column represents the part number code for the corresponding drive strength.
- Add the drive strength code to the part number for ordering purposes.

#### **Calculating Maximum Frequency**

Based on the rise and fall time data given in Tables 7 through 10, the maximum frequency the oscillator can operate with guaranteed full swing of the output voltage over temperature as follows:

Max Frequency = 
$$\frac{1}{6 \times Trf_{-}10/90}$$

Where Trf\_10/90 is the typical rise/fall time at 10% to 90% Vdd.

#### Example 1

Calculate f<sub>MAX</sub> for the following condition:

- Vdd = +3.3V (Table 10)
- · Capacitive Load: 30 pF
- Typical Tr/f time = 1.66 ns (rise/fall time part number code =G)

Part number for the above example:

MO3808ID4-CGH-33NP-0049152000



Drive strength code is here.



## Rise/Fall Time (10% to 90%) vs $C_{LOAD}$ Tables

Table 7. Vdd = +1.8V Rise/Fall Times for Specific C<sub>LOAD</sub>

|                                    | Rise/Fall Time Typ (ns) |       |       |       |       |  |  |
|------------------------------------|-------------------------|-------|-------|-------|-------|--|--|
| Drive Strength \ C <sub>LOAD</sub> | 5 pF                    | 15 pF | 30 pF | 45 pF | 60 pF |  |  |
| L                                  | 12.45                   | 17.68 | 19.48 | 46.21 | 57.82 |  |  |
| Α                                  | 6.50                    | 10.27 | 16.21 | 23.92 | 30.73 |  |  |
| R                                  | 4.38                    | 7.05  | 11.61 | 16.17 | 20.83 |  |  |
| В                                  | 3.27                    | 5.30  | 8.89  | 12.18 | 15.75 |  |  |
| S                                  | 2.62                    | 4.25  | 7.20  | 9.81  | 12.65 |  |  |
| D                                  | 2.19                    | 3.52  | 6.00  | 8.31  | 10.59 |  |  |
| T                                  | 1.76                    | 3.01  | 5.14  | 7.10  | 9.15  |  |  |
| E                                  | 1.59                    | 2.59  | 4.49  | 6.25  | 7.98  |  |  |
| U                                  | 1.49                    | 2.28  | 3.96  | 5.55  | 7.15  |  |  |
| F                                  | 1.22                    | 2.10  | 3.57  | 5.00  | 6.46  |  |  |
| W                                  | 1.07                    | 1.88  | 3.23  | 4.50  | 5.87  |  |  |
| G                                  | 1.01                    | 1.64  | 2.95  | 4.12  | 5.40  |  |  |
| X                                  | 0.96                    | 1.50  | 2.74  | 3.80  | 4.98  |  |  |
| K                                  | 0.92                    | 1.41  | 2.56  | 3.52  | 4.64  |  |  |
| Υ                                  | 0.88                    | 1.34  | 2.39  | 3.25  | 4.32  |  |  |
| Q                                  | 0.86                    | 1.29  | 2.24  | 3.04  | 4.06  |  |  |
| Z or "0": Default                  | 0.82                    | 1.24  | 2.07  | 2.89  | 3.82  |  |  |
| M                                  | 0.77                    | 1.20  | 1.94  | 2.72  | 3.61  |  |  |
| N                                  | 0.66                    | 1.15  | 1.84  | 2.58  | 3.41  |  |  |
| P                                  | 0.51                    | 1.09  | 1.76  | 2.45  | 3.24  |  |  |

Table 8. Vdd =  $\pm 2.5$ V Rise/Fall Times for Specific C<sub>LOAD</sub>

|                                    | Rise/Fall Time Typ (ns) |       |       |       |       |  |  |  |
|------------------------------------|-------------------------|-------|-------|-------|-------|--|--|--|
| Drive Strength \ C <sub>LOAD</sub> | 5 pF                    | 15 pF | 30 pF | 45 pF | 60 pF |  |  |  |
| L                                  | 8.68                    | 13.59 | 18.36 | 32.70 | 42.06 |  |  |  |
| Α                                  | 4.42                    | 7.18  | 11.93 | 16.60 | 21.38 |  |  |  |
| R                                  | 2.93                    | 4.78  | 8.15  | 11.19 | 14.59 |  |  |  |
| В                                  | 2.21                    | 3.57  | 6.19  | 8.55  | 11.04 |  |  |  |
| S                                  | 1.67                    | 2.87  | 4.94  | 6.85  | 8.80  |  |  |  |
| D                                  | 1.50                    | 2.33  | 4.11  | 5.68  | 7.33  |  |  |  |
| T                                  | 1.06                    | 2.04  | 3.50  | 4.84  | 6.26  |  |  |  |
| E                                  | 0.98                    | 1.69  | 3.03  | 4.20  | 5.51  |  |  |  |
| U                                  | 0.93                    | 1.48  | 2.69  | 3.73  | 4.92  |  |  |  |
| F                                  | 0.90                    | 1.37  | 2.44  | 3.34  | 4.42  |  |  |  |
| W                                  | 0.87                    | 1.29  | 2.21  | 3.04  | 4.02  |  |  |  |
| G or "0": Default                  | 0.67                    | 1.20  | 2.00  | 2.79  | 3.69  |  |  |  |
| X                                  | 0.44                    | 1.10  | 1.86  | 2.56  | 3.43  |  |  |  |
| K                                  | 0.38                    | 0.99  | 1.76  | 2.37  | 3.18  |  |  |  |
| Υ                                  | 0.36                    | 0.83  | 1.66  | 2.20  | 2.98  |  |  |  |
| Q                                  | 0.34                    | 0.71  | 1.58  | 2.07  | 2.80  |  |  |  |
| Z                                  | 0.33                    | 0.65  | 1.51  | 1.95  | 2.65  |  |  |  |
| M                                  | 0.32                    | 0.62  | 1.44  | 1.85  | 2.50  |  |  |  |
| N                                  | 0.31                    | 0.59  | 1.37  | 1.77  | 2.39  |  |  |  |
| Р                                  | 0.30                    | 0.57  | 1.29  | 1.70  | 2.28  |  |  |  |

Table 9. Vdd = +2.8V Rise/Fall Times for Specific  $C_{LOAD}$ 

| Rise/Fall Time Typ (ns)            |      |       |       |       |       |  |  |
|------------------------------------|------|-------|-------|-------|-------|--|--|
| Drive Strength \ C <sub>LOAD</sub> | 5 pF | 15 pF | 30 pF | 45 pF | 60 pF |  |  |
| L                                  | 7.93 | 12.69 | 17.94 | 30.10 | 38.89 |  |  |
| Α                                  | 4.06 | 6.66  | 11.04 | 15.31 | 19.80 |  |  |
| R                                  | 2.68 | 4.40  | 7.53  | 10.29 | 13.37 |  |  |
| В                                  | 2.00 | 3.25  | 5.66  | 7.84  | 10.11 |  |  |
| S                                  | 1.59 | 2.57  | 4.54  | 6.27  | 8.07  |  |  |
| D                                  | 1.19 | 2.14  | 3.76  | 5.21  | 6.72  |  |  |
| T                                  | 1.00 | 1.79  | 3.20  | 4.43  | 5.77  |  |  |
| E                                  | 0.94 | 1.51  | 2.78  | 3.84  | 5.06  |  |  |
| U                                  | 0.90 | 1.38  | 2.48  | 3.40  | 4.50  |  |  |
| F                                  | 0.87 | 1.29  | 2.21  | 3.03  | 4.05  |  |  |
| W                                  | 0.62 | 1.19  | 1.99  | 2.76  | 3.68  |  |  |
| G or "0": Default                  | 0.41 | 1.08  | 1.84  | 2.52  | 3.36  |  |  |
| X                                  | 0.37 | 0.96  | 1.72  | 2.33  | 3.15  |  |  |
| K                                  | 0.35 | 0.78  | 1.63  | 2.15  | 2.92  |  |  |
| Υ                                  | 0.33 | 0.67  | 1.54  | 2.00  | 2.75  |  |  |
| Q                                  | 0.32 | 0.63  | 1.46  | 1.89  | 2.57  |  |  |
| Z                                  | 0.31 | 0.60  | 1.39  | 1.80  | 2.43  |  |  |
| М                                  | 0.30 | 0.57  | 1.31  | 1.72  | 2.30  |  |  |
| N                                  | 0.30 | 0.56  | 1.22  | 1.63  | 2.22  |  |  |
| P                                  | 0.29 | 0.54  | 1.13  | 1.55  | 2.13  |  |  |

Table 10. Vdd = +3.3V Rise/Fall Times for Specific C<sub>LOAD</sub>

|                                    | Rise/Fall Time Typ (ns) |       |       |       |       |  |  |
|------------------------------------|-------------------------|-------|-------|-------|-------|--|--|
| Drive Strength \ C <sub>LOAD</sub> | 5 pF                    | 15 pF | 30 pF | 45 pF | 60 pF |  |  |
| L                                  | 7.18                    | 11.59 | 17.24 | 27.57 | 35.57 |  |  |
| Α                                  | 3.61                    | 6.02  | 10.19 | 13.98 | 18.10 |  |  |
| R                                  | 2.31                    | 3.95  | 6.88  | 9.42  | 12.24 |  |  |
| В                                  | 1.65                    | 2.92  | 5.12  | 7.10  | 9.17  |  |  |
| S                                  | 1.43                    | 2.26  | 4.09  | 5.66  | 7.34  |  |  |
| D                                  | 1.01                    | 1.91  | 3.38  | 4.69  | 6.14  |  |  |
| Т                                  | 0.94                    | 1.51  | 2.86  | 3.97  | 5.25  |  |  |
| E                                  | 0.90                    | 1.36  | 2.50  | 3.46  | 4.58  |  |  |
| U                                  | 0.86                    | 1.25  | 2.21  | 3.03  | 4.07  |  |  |
| F or "0": Default                  | 0.48                    | 1.15  | 1.95  | 2.72  | 3.65  |  |  |
| W                                  | 0.38                    | 1.04  | 1.77  | 2.47  | 3.31  |  |  |
| G                                  | 0.36                    | 0.87  | 1.66  | 2.23  | 3.03  |  |  |
| X                                  | 0.34                    | 0.70  | 1.56  | 2.04  | 2.80  |  |  |
| K                                  | 0.33                    | 0.63  | 1.48  | 1.89  | 2.61  |  |  |
| Υ                                  | 0.32                    | 0.60  | 1.40  | 1.79  | 2.43  |  |  |
| Q                                  | 0.32                    | 0.58  | 1.31  | 1.69  | 2.28  |  |  |
| Z                                  | 0.30                    | 0.56  | 1.22  | 1.62  | 2.17  |  |  |
| M                                  | 0.30                    | 0.55  | 1.12  | 1.54  | 2.07  |  |  |
| N                                  | 0.30                    | 0.54  | 1.02  | 1.47  | 1.97  |  |  |
| P                                  | 0.29                    | 0.52  | 0.95  | 1.41  | 1.90  |  |  |

## MO3808

### 1 MHz to 80 MHz High Performance VCMO



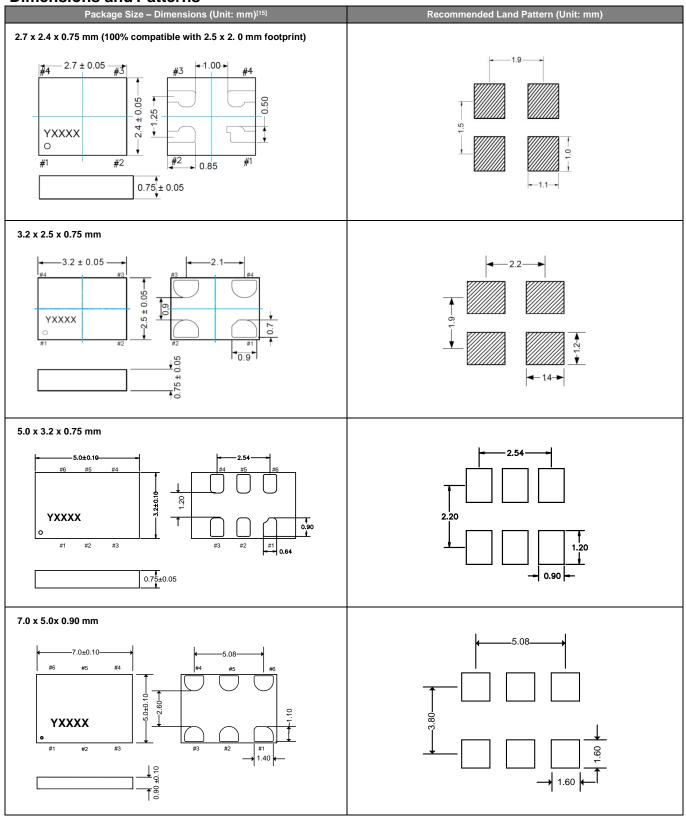
## Instant Samples with Time Machine and Field Programmable Oscillators

KDS supports a field programmable version of the MO3808 low power oscillator for fast prototyping and real time customization of features. The field programmable devices (FP devices) are available for all four standard MO3808 package sizes and can be configured to one's exact specification using the Time Machine II, an USB powered MEMS oscillator programmer.

#### Customizable Features of the MO3808 FP Devices Include

- Any frequency between 1 80 MHz
- Three frequency stability options, ±10 ppm, ±25 ppm, ±50 ppm
- Two operating temperatures, -20 to +70°C or -40 to +85°C
- Four supply voltage options, +1.8V, +2.5V, +2.8V, +3.3V
- Eight pull range options: ±25 ppm, ±50 ppm, ±100 ppm, ±150 ppm, ±200 ppm, ±400 ppm, ±800 ppm, ±1600 ppm

For more information regarding KDS's field programmable solutions, contact KDS.

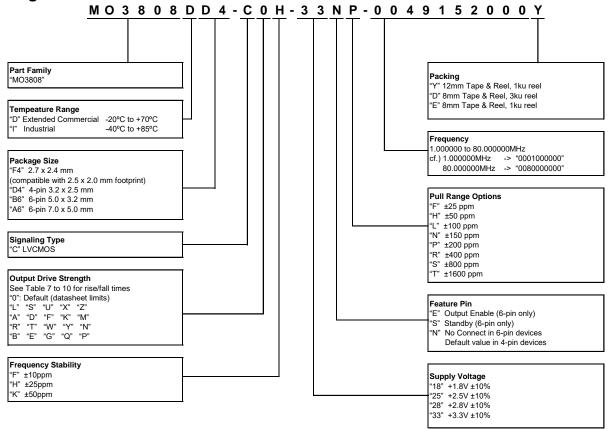

MO3808 is typically factory-programmed per customer ordering codes for volume delivery.

## MO3808

## 1 MHz to 80 MHz High Performance VCMO



### **Dimensions and Patterns**




Notes:

<sup>15.</sup> Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.



#### **Ordering Information**



#### Table 12. APR Table

Absolute pull range (APR) = Nominal pull range (PR) - frequency stability (F\_stab) - Aging (F\_aging)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency Stability |       |       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-------|--|--|--|
| Nominal Pull Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ±10                 | ±25   | ±50   |  |  |  |
| , and the second | APR (ppm)           |       |       |  |  |  |
| ±25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±10                 | -     | -     |  |  |  |
| ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±35                 | ±20   | -     |  |  |  |
| ±100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±85                 | ±70   | ±45   |  |  |  |
| ±150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±135                | ±120  | ±95   |  |  |  |
| ±200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±185                | ±170  | ±145  |  |  |  |
| ±400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±385                | ±370  | ±345  |  |  |  |
| ±800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±785                | ±770  | ±745  |  |  |  |
| ±1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ±1585               | ±1570 | ±1545 |  |  |  |

### Table 13. Ordering Codes for Supported Tape & Reel Packing Method<sup>[16]</sup>

| Device Size  | 12 mm T&R (3ku) | 12 mm T&R (1ku) | 8 mm T&R (3ku) | 8 mm T&R (1ku) |
|--------------|-----------------|-----------------|----------------|----------------|
| 2.7 x 2.4 mm | -               | ı               | D              | E              |
| 3.2 x 2.5 mm | -               | -               | D              | E              |
| 5.0 x 3.2 mm | -               | Υ               | -              | -              |
| 7.0 x 5.0 mm | -               | Υ               | -              | -              |

#### Notes:

16. "-" indicates "not available."

# MO3808 1 MHz to 80 MHz High Performance VCMO



## **Revision History**

### **Table 14. Datasheet Version and Change Log**

| Version | Release Date | Change Summary                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0.6     | 1/24/13      | Preliminary                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1.0     | 3/7/14       | Preliminary removed from title  Updated features and application  Updated electrical specifications table  Updated figure 4,  Added new 6-pin device for figure 5  Updated timing diagrams  Updated programmable drive strength section  Updated ordering information drawing  Updated APR table  Updated ordering codes for tape and reel table  Reformatted additional information table columns |  |
| 1.01    | 1/8/15       | Corrected CLK and VDD functionality description in Table 2     Revised VIN functionality description in Table 3                                                                                                                                                                                                                                                                                    |  |