Features

- 31 standard frequencies from 25 MHz to 212.5 MHz
- LVPECL and LVDS output signaling types
- 0.6 ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth
- Frequency stability as low as $\pm 10 \mathrm{ppm}$
- Industrial and extended commercial temperature ranges
- Industry-standard packages: $3.2 \times 2.5,5.0 \times 3.2$ and $7.0 \times 5.0 \mathrm{mmxmm}$
- For any other frequencies between 1 to 625 MHz , refer to MO9121 and MO9122 datasheet

Applications

- 10GB Ethernet, SONET, SATA, SAS, Fibre Channel, PCI-Express
- Telecom, networking, instrumentation, storage, servers

Electrical Characteristics

Parameter and Conditions	Symbol	Min.	Typ.	Max.	Unit	Condition
LVPECL and LVDS, Common Electrical Characteristics						
Supply Voltage	Vdd	+2.97	+3.3	+3.63	V	
		+2.25	+2.5	+2.75	V	
		+2.25	-	+3.63	V	Termination schemes in Figures 1 and 2-XX ordering code
Output Frequency Range	f	25	-	212.5	MHz	See last page for list of standardfrequencies
Frequency Stability	F_stab	-10	-	+10	ppm	Inclusive of initial tolerance, operating temperature, rated power supply voltage, and load variations
		-20	-	+20	ppm	
		-25	-	+25	ppm	
		-50	-	+50	ppm	
First Year Aging	F_aging1	-2.0	-	+2.0	ppm	$+25^{\circ} \mathrm{C}$
10-year Aging	F_aging10	-5.0	-	+5.0	ppm	$+25^{\circ} \mathrm{C}$
Operating Temperature Range	T_use	-40	-	+85	${ }^{\circ} \mathrm{C}$	Industrial
		-20	-	+70	${ }^{\circ} \mathrm{C}$	Extended Commercial
Input Voltage High	VIH	70\%	-	-	Vdd	Pin 1, OE or $\overline{\text { ST }}$
Input Voltage Low	VIL	-	-	30\%	Vdd	Pin 1, OE or $\overline{\text { ST }}$
Input Pull-up Impedance	Z_in	-	100	250	k Ω	Pin 1, OE logic high or logic low, or $\overline{\text { ST }}$ logic high
		2.0	-	-	M Ω	Pin 1, $\overline{\mathrm{ST}}$ logic low
Start-up Time	T_start	-	6.0	10	ms	Measured from the time Vdd reaches its rated minimum value.
Resume Time	T_resume	-	6.0	10	ms	In Standby mode, measured from the time $\overline{\mathrm{ST}}$ pin crosses 50\% threshold.
Duty Cycle	DC	45	-	55	\%	Contact KDS for tighter duty cycle
LVPECL, DC and AC Characteristics						
Current Consumption	Idd	-	+61	+69	mA	Excluding Load Termination Current, Vdd $=+3.3 \mathrm{~V}$ or +2.5 V
OE Disable Supply Current	I_OE	-	-	+35	mA	OE = Low
Output Disable Leakage Current	I_leak	-	-	+1.0	$\mu \mathrm{A}$	OE = Low
Standby Current	I_std	-	-	+100	$\mu \mathrm{A}$	$\overline{\mathrm{ST}}=$ Low, for all Vdds
Maximum Output Current	I_driver	-	-	+30	mA	Maximum average current drawn from OUT+ or OUT-
Output High Voltage	VOH	Vdd-1.1	-	Vdd-0.7	V	See Figure 1(a)
Output Low Voltage	VOL	Vdd-1.9	-	Vdd-1.5	V	See Figure 1(a)
Output Differential Voltage Swing	V_Swing	+1.2	+1.6	+2.0	V	See Figure 1(b)
Rise/Fall Time	Tr, Tf	-	300	500	ps	20\% to 80\%, see Figure 1(a)
OE Enable/Disable Time	T_oe	-	-	115	ns	$\mathrm{f}=212.5 \mathrm{MHz}$ - For other frequencies, T_oe $=100 \mathrm{~ns}+3$ period
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{Vdd}=+3.3 \mathrm{~V}$ or +2.5 V
		-	1.2	1.7	ps	$\mathrm{f}=156.25 \mathrm{MHz}, \mathrm{Vdd}=+3.3 \mathrm{~V}$ or +2.5 V
		-	1.2	1.7	ps	$\mathrm{f}=212.5 \mathrm{MHz}, \mathrm{Vdd}=+3.3 \mathrm{~V}$ or +2.5 V
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	$\mathrm{f}=156.25 \mathrm{MHz}$, Integration bandwidth $=12 \mathrm{kHz}$ to 20 MHz , all Vdds
LVDS, DC and AC Characteristics						
Current Consumption	Idd	-	+47	+55	mA	Excluding Load Termination Current, Vdd $=+3.3 \mathrm{~V}$ or +2.5 V
OE Disable Supply Current	I_OE	-	-	+35	mA	OE = Low
Differential Output Voltage	VOD	+250	+350	+450	mV	See Figure 2

Electrical Characteristics(continued)

Parameter and Conditions	Symbol	Min.	Typ.	Max.	Unit	Condition
LVDS, DC and AC Characteristics (continued)						
Output Disable Leakage Current	I_leak	-	-	+1.0	$\mu \mathrm{A}$	OE = Low
Standby Current	I_std	-	-	+100	$\mu \mathrm{A}$	$\overline{\mathrm{ST}}=$ Low, for all Vdds
VOD Magnitude Change	$\triangle \mathrm{VOD}$	-	-	+50	mV	See Figure 2
Offset Voltage	vos	+1.125	+1.2	+1.375	V	See Figure 2
VOS Magnitude Change	$\triangle \mathrm{VOS}$	-	-	+50	mV	See Figure 2
Rise/Fall Time	Tr, Tf	-	495	600	ps	20\% to 80\%, see Figure 2
OE Enable/Disable Time	T_oe	-	-	115	ns	$\mathrm{f}=212.5 \mathrm{MHz}$ - For other frequencies, $\mathrm{T}_{2} \mathrm{oe}=100 \mathrm{~ns}+3$ period
RMS Period Jitter	T j jitt	-	1.2	1.7	ps	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{Vdd}=+3.3 \mathrm{~V}$ or +2.5 V
		-	1.2	1.7	ps	$\mathrm{f}=156.25 \mathrm{MHz}, \mathrm{Vdd}=+3.3 \mathrm{~V}$ or +2.5 V
		-	1.2	1.7	ps	$\mathrm{f}=212.5 \mathrm{MHz}, \mathrm{Vdd}=+3.3 \mathrm{~V}$ or +2.5 V
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	$\mathrm{f}=156.25 \mathrm{MHz}$, Integration bandwidth $=12 \mathrm{kHz}$ to 20 MHz , all Vdds

Pin Description

Pin	Map	Functionality	
1	OE	Input	H or Open: specified frequency output L: output is high impedance
	$\overline{\text { ST }}$	Input	H or Open: specified frequency output L: Device goes to sleep mode. Supply current reduces to I_std.
	NC	NA	No Connect; Leave it floating or connect to GND for better heat dissipation
3	GND	Power	VDD Power Supply Ground
4	OUT+	Output	Oscillator output
5	OUT-	Output	Complementary oscillator output
6	VDD	Power	Power supply voltage

Top View

Absolute Maximum

Attempted operation outside the absolute maximum ratings of the part may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	
Storage Temperature	-65	+150	
VDD	-0.5	+4.0	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge (HBM)	-	V	
Soldering Temperature (follow standard Pb free soldering guidelines)	-	+2000	

Thermal Consideration

Package	QJA, 4 Layer Board $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta \mathrm{JC}$, Bottom $\left({ }^{\circ} \mathrm{C} / W\right)$
7050, 6-pin	142	27
5032, 6-pin	97	20
3225, 6-pin	109	20

Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method2002
Mechanical Vibration	MIL-STD-883F, Method2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method2003
Moisture Sensitivity Level	MSL1 @ 260 ${ }^{\circ} \mathrm{C}$

Waveform Diagrams

Figure 1(a). LVPECL Voltage Levels per Differential Pin (OUT+/OUT-)

Figure 1(b). LVPECL Voltage Levels Across Differential Pair

Figure 2. LVDS Voltage Levels per Differential Pin (OUT+/OUT-)

Termination Diagrams

LVPECL:

Figure 3. LVPECL Typical Termination

Figure 4. LVPECL AC Coupled Termination

Figure 5. LVPECL with Thevenin Typical Termination

LVDS:

Figure 6. LVDS Single Termination (Load Terminated)

Dimensions and Patterns

Notes:

1. Top Marking: Y denotes manufacturing origin and $X X X X$ denotes manufacturing lot number. The value of " Y " will depend on the assembly location of the device.
2. A capacitor of value $0.1 \mu \mathrm{~F}$ between Vdd and GND is recommended.

Ordering Information

Supported Frequencies

25.000000 MHz	50.000000 MHz	74.175824 MHz	74.250000 MHz	75.000000 MHz	98.304000 MHz	100.000000 MHz	106.250000 MHz
125.000000 MHz	133.000000 MHz	133.300000 MHz	133.330000 MHz	133.333000 MHz	133.333300 MHz	133.333330 MHz	133.333333 MHz
148.351648 MHz	148.500000 MHz	150.000000 MHz	155.520000 MHz	156.250000 MHz	161.132800 MHz	166.000000 MHz	166.600000 MHz
166.660000 MHz	166.666000 MHz	166.666600 MHz	166.666660 MHz	166.666666 MHz	200.000000 MHz	212.500000 MHz	

Ordering Codes for Supported Tape \& Reel Packing Method

Device Size	$8 \underset{(3 \mathrm{ku})}{\mathrm{mm} \text { T\&R }}$	$8 \underset{(1 \mathrm{ku})}{\mathrm{mm} T \& R}$	$\begin{gathered} 8 \underset{(250 \mathrm{u})}{\mathrm{mm} \text { T\&R }} \\ \hline \end{gathered}$	$12 \underset{(3 \mathrm{ku})}{\mathrm{mm}} \mathrm{~T} \& \mathrm{R}$	$12 \underset{(1 \mathrm{ku})}{\mathrm{mm}} \text { T\&R }$	$\begin{gathered} 12 \mathrm{~mm} \text { T\&R } \\ (250 \mathrm{u}) \end{gathered}$	$\begin{gathered} 16 \underset{(3 \mathrm{ku})}{\mathrm{mm}} \text { T\&R } \\ \hline \end{gathered}$	$\underset{(1 \mathrm{ku})}{16 \mathrm{~mm}} \mathrm{~T}$	$\begin{gathered} 16 \mathrm{~mm} \text { T\&R } \\ (250 \mathrm{u}) \end{gathered}$
$7.0 \times 5.0 \mathrm{~mm}$	-	-	-	-	-	-	-	Y	X
$5.0 \times 3.2 \mathrm{~mm}$	-	-	-	-	Y	X	-	-	-
$3.2 \times 2.5 \mathrm{~mm}$	D	E	G	-	-	-	-	-	-

Revision History

Version	Release Date	Change Summary
1.01	$2 / 20 / 13$	Original
1.02	$11 / 23 / 13$	Added input specifications, LVPECL/LVDS waveforms, packaging T\&Roptions
1.03	$2 / 6 / 14$	Added 8mm T\&R option
1.04	$3 / 3 / 14$	Added ± 10 ppm
1.05	$7 / 23 / 14$	Include Thermal Consideration Table
1.06	$10 / 3 / 14$	Modified Thermal Consideration values

